First-order logic is also known as predicate logic and predicate calculus

 $\frac{\text{Signature}}{n \ge 1.} \Sigma \text{ is a family of sets } \Sigma_n^F \text{, for } n \ge 0 \text{ and sets } \Sigma_n^R \text{, for } n \ge 1.$

∃ ⊳.

 $\frac{\text{Signature}}{n \ge 1.} \Sigma \text{ is a family of sets } \Sigma_n^F \text{, for } n \ge 0 \text{ and sets } \Sigma_n^R \text{, for } n \ge 1.$

Elements of Σ_n^F are symbols of *n*-argument operations.

 $\frac{\text{Signature}}{n \ge 1.} \Sigma \text{ is a family of sets } \Sigma_n^F \text{, for } n \ge 0 \text{ and sets } \Sigma_n^R \text{, for } n \ge 1.$

Elements of Σ_n^F are symbols of *n*-argument operations.

Elements of Σ_n^R are symbols of *n*-argument relations. Equality sign = does not belong to Σ . $\frac{\text{Signature}}{n \ge 1} \Sigma \text{ is a family of sets } \Sigma_n^F, \text{ for } n \ge 0 \text{ and sets } \Sigma_n^R, \text{ for } n \ge 1.$

Elements of Σ_n^F are symbols of *n*-argument operations.

Elements of Σ_n^R are symbols of *n*-argument relations. Equality sign = does not belong to Σ .

If the signature is finite and the arities are known, it is often presented as a sequence of symbols, e.g., $+, \cdot, 0, 1$

The set of terms $\mathcal{T}_{\Sigma}(X)$ over signature Σ and variable set X:

The set of terms $\mathcal{T}_{\Sigma}(X)$ over signature Σ and variable set X:

∃ ▶ .

• Individual variables are terms

The set of terms $\mathcal{T}_{\Sigma}(X)$ over signature Σ and variable set X:

- Individual variables are terms
- For every $n \ge 0$ and every symbol $f \in \Sigma_n^F$, if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is also a term

The set of terms $\mathcal{T}_{\Sigma}(X)$ over signature Σ and variable set X:

- Individual variables are terms
- For every $n \ge 0$ and every symbol $f \in \Sigma_n^F$, if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is also a term

The set FV(t) of variables occurring in t:

The set of terms $\mathcal{T}_{\Sigma}(X)$ over signature Σ and variable set X:

- Individual variables are terms
- For every $n \ge 0$ and every symbol $f \in \Sigma_n^F$, if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is also a term

The set FV(t) of variables occurring in t:

•
$$FV(x) = \{x\}.$$

The set of terms $\mathcal{T}_{\Sigma}(X)$ over signature Σ and variable set X:

- Individual variables are terms
- For every $n \ge 0$ and every symbol $f \in \Sigma_n^F$, if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is also a term

The set FV(t) of variables occurring in t:

- $FV(x) = \{x\}.$
- $FV(f(t_1,\ldots,t_n)) = \bigcup_{i=1}^n FV(t_i).$

• Falsity \perp is an atomic formula

- Falsity \perp is an atomic formula
- For each $n \ge 1$, each symbol $r \in \Sigma_n^R$, and each n terms $t_1, \ldots, t_n \in \mathcal{T}_{\Sigma}(X)$, the expression $r(t_1, \ldots, t_n)$ is an atomic formula

- ullet Falsity ot is an atomic formula
- For each $n \ge 1$, each symbol $r \in \Sigma_n^R$, and each n terms $t_1, \ldots, t_n \in \mathcal{T}_{\Sigma}(X)$, the expression $r(t_1, \ldots, t_n)$ is an atomic formula
- For each two terms t_1, t_2 , the expression $(t_1 = t_2)$ is an atomic formula

• Each atomic formula is a formula

- Each atomic formula is a formula
- If $arphi,\psi$ are formulas, then $(arphi
 ightarrow\psi)$ is a formula

- Each atomic formula is a formula
- If $arphi,\psi$ are formulas, then $(arphi
 ightarrow\psi)$ is a formula
- If φ is a formula and $x \in X$ is a variable, then $(\forall x \varphi)$ is a formula

Free variables of a formula

The set of <u>free variables</u> $FV(\varphi)$ of a formula φ :

Free variables of a formula

The set of <u>free variables</u> $FV(\varphi)$ of a formula φ :

▶ 《 Ē ▶ 《

•
$$FV(\perp) = \emptyset;$$

•
$$FV(\perp) = \emptyset;$$

•
$$FV(r(t_1,\ldots,t_n)) = \bigcup_{i=1}^n FV(t_i);$$

•
$$FV(\perp) = \emptyset;$$

•
$$FV(r(t_1,\ldots,t_n)) = \bigcup_{i=1}^n FV(t_i);$$

•
$$FV(t_1 = t_2) = FV(t_1) \cup FV(t_2);$$

▶ 《 Ē ▶ 《

•
$$FV(\perp) = \emptyset;$$

•
$$FV(r(t_1,\ldots,t_n)) = \bigcup_{i=1}^n FV(t_i);$$

•
$$FV(t_1 = t_2) = FV(t_1) \cup FV(t_2);$$

•
$$FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi);$$

•
$$FV(\perp) = \emptyset;$$

- $FV(r(t_1,\ldots,t_n)) = \bigcup_{i=1}^n FV(t_i);$
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2);$

•
$$FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi);$$

•
$$FV(\forall x\varphi) = FV(\varphi) - \{x\}.$$

•
$$FV(\perp) = \emptyset;$$

•
$$FV(r(t_1,\ldots,t_n)) = \bigcup_{i=1}^n FV(t_i);$$

•
$$FV(t_1 = t_2) = FV(t_1) \cup FV(t_2);$$

•
$$FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi);$$

•
$$FV(\forall x\varphi) = FV(\varphi) - \{x\}.$$

A formula without quantifiers is an open formula.

A formula without free variables is a sentence, or a closed formula.

Additional propositional connectives are abbreviations:

• ($\neg \varphi$) for $\varphi \rightarrow \bot$

•
$$(\varphi \lor \psi)$$
 for $((\neg \varphi) \to \psi)$

•
$$(\varphi \land \psi)$$
 for $(\neg((\neg \varphi) \lor (\neg \psi)))$

•
$$(\varphi \leftrightarrow \psi)$$
 for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$

The existential quantifier is an abbreviation, too:

$$(\exists x \varphi)$$
 means $(\neg(\forall x \neg \varphi)).$

Free vs. bound occurrences of a variable

Each variable occurrence in an atomic formula is a free one

Each variable occurrence in an atomic formula is a free one

Free (bound) occurrences in φ and ψ remain free (bound) in the formula $\varphi \to \psi.$

Each variable occurrence in an atomic formula is a free one

Free (bound) occurrences in φ and ψ remain free (bound) in the formula $\varphi \rightarrow \psi$.

Free occurrences of x in φ become bound in $\forall x \varphi$. Occurrences of other variables in this formula do not change their status Each variable occurrence in an atomic formula is a free one

Free (bound) occurrences in φ and ψ remain free (bound) in the formula $\varphi \rightarrow \psi$.

Free occurrences of x in φ become bound in $\forall x \varphi$. Occurrences of other variables in this formula do not change their status

The distinction between free and bound variables resembles the distinction between local and global variables in a procedure

A structure ${\mathfrak A}$ over Σ consists of

- A $\underline{\mathsf{structure}}\ \mathfrak{A}$ over Σ consists of
 - a **nonempty** set A: the <u>carrier</u> or <u>universe</u> of \mathfrak{A}

- A $\underline{\mathsf{structure}}\ \mathfrak{A}$ over Σ consists of
 - a **nonempty** set *A*: the <u>carrier</u> or <u>universe</u> of \mathfrak{A}
 - an interpretation of each symbol $f \in \Sigma_n^F$ as an *n*-ary function $f^{\mathfrak{A}}: A^n \to A$

Semantics of formulas

- A structure ${\mathfrak A}$ over Σ consists of
 - a **nonempty** set A: the <u>carrier</u> or <u>universe</u> of \mathfrak{A}
 - an interpretation of each symbol $f \in \Sigma_n^F$ as an *n*-ary function $f^{\mathfrak{A}}: A^n \to A$
 - an interpretation of each symbol $r \in \Sigma_n^R$ as an *n*-ary relation $r^{\mathfrak{A}} \subseteq A^n$
Semantics of formulas

- A structure \mathfrak{A} over Σ consists of
 - a **nonempty** set A: the <u>carrier</u> or <u>universe</u> of \mathfrak{A}
 - an interpretation of each symbol $f \in \Sigma_n^F$ as an *n*-ary function $f^{\mathfrak{A}}: A^n \to A$
 - an interpretation of each symbol $r \in \Sigma_n^R$ as an *n*-ary relation $r^{\mathfrak{A}} \subseteq A^n$

Notation: $\mathfrak{A} = \langle A, f_1^{\mathfrak{A}}, \dots, f_n^{\mathfrak{A}}, r_1^{\mathfrak{A}}, \dots, r_m^{\mathfrak{A}} \rangle$, where $f_1, \dots, f_n, r_1, \dots, r_m$ are the symbols in the signature

A valuation in a Σ -structure $\mathfrak A$ is a function $\varrho:X o A$

▶ < ≣ ▶ <</p>

- 一司

글▶ 글

A valuation in a Σ -structure \mathfrak{A} is a function $\varrho: X \to A$

For a valuation ρ , a variable $x \in X$ and an element $a \in A$ we define a modified valuation $\rho_x^a : X \to A$:

$$\varrho_x^a(y) = \begin{cases} \varrho(y) & y \neq x \\ a & \text{otherwise} \end{cases}$$

The value of a term $t \in \mathcal{T}_{\Sigma}(X)$ in a Σ -structure \mathfrak{A} under valuation ϱ is denoted $\llbracket t \rrbracket_{\varrho}^{\mathfrak{A}}$ or $\llbracket t \rrbracket_{\varrho}$.

The value of a term $t \in \mathcal{T}_{\Sigma}(X)$ in a Σ -structure \mathfrak{A} under valuation ϱ is denoted $\llbracket t \rrbracket_{\varrho}^{\mathfrak{A}}$ or $\llbracket t \rrbracket_{\varrho}$.

•
$$\llbracket x \rrbracket_{\varrho}^{\mathfrak{A}} = \varrho(x).$$

The value of a term $t \in \mathcal{T}_{\Sigma}(X)$ in a Σ -structure \mathfrak{A} under valuation ϱ is denoted $\llbracket t \rrbracket_{\varrho}^{\mathfrak{A}}$ or $\llbracket t \rrbracket_{\varrho}$.

•
$$\llbracket x \rrbracket_{\varrho}^{\mathfrak{A}} = \varrho(x).$$

• $\llbracket f(t_1, \ldots, t_n) \rrbracket_{\varrho}^{\mathfrak{A}} = f^{\mathfrak{A}}(\llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}, \ldots, \llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}}).$

 $(\mathfrak{A},\varrho)\models\varphi$ is read:

- The formula φ is <u>satisfied</u> in the structure \mathfrak{A} under the valuation ϱ .
- The formula φ is <u>true</u> in the structure \mathfrak{A} under the valuation ϱ . The formula φ <u>holds</u> in the structure \mathfrak{A} under the valuation ϱ .

 $(\mathfrak{A},\varrho)\models\varphi$ is read:

- The formula φ is <u>satisfied</u> in the structure \mathfrak{A} under the valuation ϱ .
- The formula φ is <u>true</u> in the structure \mathfrak{A} under the valuation ϱ . The formula φ <u>holds</u> in the structure \mathfrak{A} under the valuation ϱ .

• $(\mathfrak{A}, \varrho) \models \bot$ does not hold

 $(\mathfrak{A},\varrho)\models\varphi$ is read:

- The formula φ is <u>satisfied</u> in the structure \mathfrak{A} under the valuation ϱ .
- The formula φ is <u>true</u> in the structure \mathfrak{A} under the valuation ϱ . The formula φ <u>holds</u> in the structure \mathfrak{A} under the valuation ϱ .

• $(\mathfrak{A},\varrho)\models\perp$ does not hold

• For $n \ge 1$, $r \in \Sigma_n^R$ and terms t_1, \ldots, t_n $(\mathfrak{A}, \varrho) \models r(t_1, \ldots, t_n)$ iff $\langle \llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}, \ldots \llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}} \rangle \in r^{\mathfrak{A}}$.

 $(\mathfrak{A},\varrho)\models\varphi$ is read:

- The formula φ is <u>satisfied</u> in the structure \mathfrak{A} under the valuation ϱ .
- The formula φ is <u>true</u> in the structure \mathfrak{A} under the valuation ϱ . The formula φ <u>holds</u> in the structure \mathfrak{A} under the valuation ϱ .

• $(\mathfrak{A},\varrho)\models\perp$ does not hold

• For $n \ge 1$, $r \in \Sigma_n^R$ and terms t_1, \ldots, t_n $(\mathfrak{A}, \varrho) \models r(t_1, \ldots, t_n)$ iff $\langle \llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}, \ldots \llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}} \rangle \in r^{\mathfrak{A}}$.

•
$$(\mathfrak{A},\varrho) \models t_1 = t_2$$
, iff $\llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}} = \llbracket t_2 \rrbracket_{\varrho}^{\mathfrak{A}}$.

 $(\mathfrak{A},\varrho)\models\varphi$ is read:

- The formula φ is <u>satisfied</u> in the structure \mathfrak{A} under the valuation ϱ .
- The formula φ is <u>true</u> in the structure \mathfrak{A} under the valuation ϱ . The formula φ <u>holds</u> in the structure \mathfrak{A} under the valuation ϱ .

• $(\mathfrak{A},\varrho)\models\perp$ does not hold

- For $n \ge 1$, $r \in \Sigma_n^R$ and terms t_1, \ldots, t_n $(\mathfrak{A}, \varrho) \models r(t_1, \ldots, t_n)$ iff $\langle \llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}, \ldots \llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}} \rangle \in r^{\mathfrak{A}}$.
- $(\mathfrak{A}, \varrho) \models t_1 = t_2$, iff $\llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}} = \llbracket t_2 \rrbracket_{\varrho}^{\mathfrak{A}}$.
- $(\mathfrak{A}, \varrho) \models (\varphi \rightarrow \psi)$, if $(\mathfrak{A}, \varrho) \models \varphi$ does not hold or $(\mathfrak{A}, \varrho) \models \psi$ holds

 $(\mathfrak{A},\varrho)\models\varphi$ is read:

- The formula φ is <u>satisfied</u> in the structure \mathfrak{A} under the valuation ϱ .
- The formula φ is <u>true</u> in the structure \mathfrak{A} under the valuation ϱ . The formula φ <u>holds</u> in the structure \mathfrak{A} under the valuation ϱ .

• $(\mathfrak{A},\varrho)\models\perp$ does not hold

- For $n \ge 1$, $r \in \Sigma_n^R$ and terms t_1, \ldots, t_n $(\mathfrak{A}, \varrho) \models r(t_1, \ldots, t_n)$ iff $\langle \llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}, \ldots \llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}} \rangle \in r^{\mathfrak{A}}$.
- $(\mathfrak{A}, \varrho) \models t_1 = t_2$, iff $\llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}} = \llbracket t_2 \rrbracket_{\varrho}^{\mathfrak{A}}$.
- $(\mathfrak{A}, \varrho) \models (\varphi \rightarrow \psi)$, if $(\mathfrak{A}, \varrho) \models \varphi$ does not hold or $(\mathfrak{A}, \varrho) \models \psi$ holds
- $(\mathfrak{A},\varrho)\models (\forall x\varphi)$ iff for every $a\in A$ holds $(\mathfrak{A},\varrho_x^a)\models \varphi$.

Fact

For any Σ -structure \mathfrak{A} and any formula φ , if valuations ϱ and ϱ' assign equal values to all free variables od φ , then

$$(\mathfrak{A},\varrho)\models\varphi \text{ iff } (\mathfrak{A},\varrho')\models\varphi.$$

Fact

For any Σ -structure \mathfrak{A} and any formula φ , if valuations ϱ and ϱ' assign equal values to all free variables od φ , then

$$(\mathfrak{A},\varrho)\models\varphi \text{ iff } (\mathfrak{A},\varrho')\models\varphi.$$

Hence simplified notation: $(\mathfrak{A}, x : a, y : b) \models \varphi$ instead of $(\mathfrak{A}, \varrho) \models \varphi$, when $\varrho(x) = a$ and $\varrho(y) = b$, and there are no other free variables in φ

If φ is a sentence, then the valuation can be disregarded.

Fact

For any Σ -structure \mathfrak{A} and any formula φ , if valuations ϱ and ϱ' assign equal values to all free variables od φ , then

$$(\mathfrak{A},\varrho)\models\varphi \text{ iff } (\mathfrak{A},\varrho')\models\varphi.$$

Hence simplified notation: $(\mathfrak{A}, x : a, y : b) \models \varphi$ instead of $(\mathfrak{A}, \varrho) \models \varphi$, when $\varrho(x) = a$ and $\varrho(y) = b$, and there are no other free variables in φ

If φ is a sentence, then the valuation can be disregarded. Hence notation $\mathfrak{A}\models\varphi$

Function $h : A \to B$ is an isomorphism of Σ -structures (denoted $h : \mathfrak{A} \cong \mathfrak{B}$) if:

Function $h : A \to B$ is an isomorphism of Σ -structures (denoted $h : \mathfrak{A} \cong \mathfrak{B}$) if:

• *h* is a bijection (onto and 1-1)

Function $h : A \to B$ is an isomorphism of Σ -structures (denoted $h : \mathfrak{A} \cong \mathfrak{B}$) if:

- *h* is a bijection (onto and 1-1)
- For $n \geq 0$, $f \in \Sigma_n^F$ and $a_1, \ldots, a_n \in A$

$$h(f^{\mathfrak{A}}(a_1,\ldots,a_n))=f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n))$$

Function $h : A \to B$ is an isomorphism of Σ -structures (denoted $h : \mathfrak{A} \cong \mathfrak{B}$) if:

(ロ) 《母) 《臣) 《臣) (日)

• Composition of two isomorphisms is an isomorphism

- Composition of two isomorphisms is an isomorphism
- The reverse function of an isomorphism is an isomorphism

- Composition of two isomorphisms is an isomorphism
- The reverse function of an isomorphism is an isomorphism
- Identity $\operatorname{id}_A : A \to A$ is an isomorphism $\operatorname{id}_A : \mathfrak{A} \cong \mathfrak{A}$

The "relation" of isomorphism is

• transitive

The "relation" of isomorphism is

- transitive
- symmetrical

The "relation" of isomorphism is

- transitive
- symmetrical
- reflexive

Theorem If $h:\mathfrak{A}\cong\mathfrak{B}$ then for every formula φ

$$(\mathfrak{A},\varrho)\models \varphi \;\; \mathsf{iff} \;\; (\mathfrak{B},h\circ \varrho)\models \varphi$$

Theorem If $h : \mathfrak{A} \cong \mathfrak{B}$ then for every formula φ

$$(\mathfrak{A},\varrho)\models \varphi \;\; \mathsf{iff} \;\; (\mathfrak{B},h\circ \varrho)\models \varphi$$

If x_1, \ldots, x_n are the free variables of φ , then

 $(\mathfrak{A}, x_1 : a_1, \ldots, x_n : a_n) \models \varphi$ iff $(\mathfrak{B}, x_1 : h(a_1), \ldots, x_n : h(a_n)) \models \varphi$

Theorem If $\mathfrak{A}\cong\mathfrak{B}$ then for every sentence φ

$$\mathfrak{A}\models\varphi \;\; \mathrm{iff} \;\; \mathfrak{B}\models\varphi$$

 \mathfrak{A} and \mathfrak{B} are elementary equivalent (denoted $\mathfrak{A} \equiv \mathfrak{B}$), iff for every sentence φ of first-order logic over their common signature, $\mathfrak{A} \models \varphi$ if and only if $\mathfrak{B} \models \varphi$

 \mathfrak{A} and \mathfrak{B} are elementary equivalent (denoted $\mathfrak{A} \equiv \mathfrak{B}$), iff for every sentence φ of first-order logic over their common signature, $\mathfrak{A} \models \varphi$ if and only if $\mathfrak{B} \models \varphi$

Corollary If $\mathfrak{A} \cong \mathfrak{B}$ to $\mathfrak{A} \equiv \mathfrak{B}$. \mathfrak{A} and \mathfrak{B} are elementary equivalent (denoted $\mathfrak{A} \equiv \mathfrak{B}$), iff for every sentence φ of first-order logic over their common signature, $\mathfrak{A} \models \varphi$ if and only if $\mathfrak{B} \models \varphi$

Corollary If $\mathfrak{A} \cong \mathfrak{B}$ to $\mathfrak{A} \equiv \mathfrak{B}$.

Intuitively, isomorphic structures are logically indistinguishable

A formula φ is satisfiable in \mathfrak{A} , if there exists a valuation ϱ in \mathfrak{A} such that $(\mathfrak{A}, \varrho) \models \varphi$.

A formula φ is satisfiable in \mathfrak{A} , if there exists a valuation ϱ in \mathfrak{A} such that $(\mathfrak{A}, \varrho) \models \varphi$.

A formula φ is satisfiable, if there exists a structure $\mathfrak{A},$ in which φ is satisfiable

A formula φ is satisfiable in \mathfrak{A} , if there exists a valuation ϱ in \mathfrak{A} such that $(\mathfrak{A}, \varrho) \models \varphi$.

A formula φ is satisfiable, if there exists a structure $\mathfrak{A},$ in which φ is satisfiable

 φ is <u>true</u> (<u>satisfied</u>, <u>valid</u>) in \mathfrak{A} , if $(\mathfrak{A}, \varrho) \models \varphi$ holds for every valuation ϱ in \mathfrak{A}
Validity and satisfiability of sentences

A sentence φ is satisfiable if there exists a structure $\mathfrak{A},$ in which φ is valid

A sentence φ is satisfiable if there exists a structure $\mathfrak{A},$ in which φ is valid

∃ ► 4

 \mathfrak{A} is then said to be a <u>model</u> of φ (denoted $\mathfrak{A} \models \varphi$)

A sentence φ is satisfiable if there exists a structure $\mathfrak{A},$ in which φ is valid

 \mathfrak{A} is then said to be a <u>model</u> of φ (denoted $\mathfrak{A} \models \varphi$)

Σ-structure \mathfrak{A} is a model of a set of sentences Γ (denoted $\mathfrak{A} \models \Gamma$), if $\mathfrak{A} \models \varphi$ holds for every $\varphi \in \Gamma$.

A sentence φ is satisfiable if there exists a structure $\mathfrak{A},$ in which φ is valid

 \mathfrak{A} is then said to be a <u>model</u> of φ (denoted $\mathfrak{A} \models \varphi$)

Σ-structure \mathfrak{A} is a model of a set of sentences Γ (denoted $\mathfrak{A} \models \Gamma$), if $\mathfrak{A} \models \varphi$ holds for every $\varphi \in \Gamma$.

Sentence φ is a <u>tautology</u> (denoted $\models \varphi$), if it is valid in every Σ -structure

If $h: \mathfrak{A} \cong \mathfrak{B}$ then for every formula φ

$$(\mathfrak{A},\varrho)\models \varphi \text{ iff } (\mathfrak{B},h\circ \varrho)\models \varphi$$

The first proof: Lemma

If $h:\mathfrak{A}\cong\mathfrak{B}$ then for every term t

$$h(\llbracket t
rbracket^{\mathfrak{A}}) = \llbracket t
rbracket^{\mathfrak{B}}_{h \circ \varrho}$$

Induction:

The first proof: Lemma

If $h: \mathfrak{A} \cong \mathfrak{B}$ then for every term t

 $h(\llbracket t \rrbracket^{\mathfrak{A}}_{\varrho}) = \llbracket t \rrbracket^{\mathfrak{B}}_{h \circ \varrho}$

Induction:

• If t is x, then the thesis $h(\varrho(x)) = (h \circ \varrho)(x)$ holds

The first proof: Lemma

If $h: \mathfrak{A} \cong \mathfrak{B}$ then for every term t

 $h(\llbracket t \rrbracket^{\mathfrak{A}}_{\varrho}) = \llbracket t \rrbracket^{\mathfrak{B}}_{h \circ \varrho}$

Induction:

- If t is x, then the thesis $h(\varrho(x)) = (h \circ \varrho)(x)$ holds
- If t to $f(t_1,\ldots,t_n)$ to

$$h(\llbracket f(t_1,\ldots,t_n) \rrbracket_{\varrho}^{\mathfrak{A}} = h(f^{\mathfrak{A}}(\llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}},\ldots,\llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}}))$$

$$= f^{\mathfrak{B}}(h(\llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}),\ldots,h(\llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}}))$$

$$= f^{\mathfrak{B}}(\llbracket t_1 \rrbracket_{h\circ\varrho}^{\mathfrak{B}},\ldots,\llbracket t_n \rrbracket_{h\circ\varrho}^{\mathfrak{B}})$$

$$= \llbracket f(t_1,\ldots,t_n) \rrbracket_{h\circ\varrho}^{\mathfrak{B}}$$

•
$$(\mathfrak{A}, \varrho) \not\models \bot$$
 and $(\mathfrak{B}, h \circ \varrho) \not\models \bot$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

•
$$(\mathfrak{A}, \varrho) \not\models \bot$$
 and $(\mathfrak{B}, h \circ \varrho) \not\models \bot$
• $(\mathfrak{A}, \varrho) \models r(t_1, \dots, t_n)$ iff $\langle \llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}, \dots, \llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}} \rangle \in r^{\mathfrak{A}}$
iff $\langle h(\llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}), \dots, h(\llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}}) \rangle \in r^{\mathfrak{B}}$
iff $\langle \llbracket t_1 \rrbracket_{h \circ \varrho}^{\mathfrak{B}}, \dots, \llbracket t_n \rrbracket_{h \circ \varrho}^{\mathfrak{B}} \rangle \in r^{\mathfrak{B}}$

iff
$$(\mathfrak{B}, h \circ \varrho) \models r(t_1, \ldots, t_n)$$

۲

•
$$(\mathfrak{A}, \varrho) \not\models \bot$$
 and $(\mathfrak{B}, h \circ \varrho) \not\models \bot$
• $(\mathfrak{A}, \varrho) \models r(t_1, \dots, t_n)$ iff $\langle \llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}, \dots, \llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}} \rangle \in r^{\mathfrak{A}}$
iff $\langle h(\llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}), \dots, h(\llbracket t_n \rrbracket_{\varrho}^{\mathfrak{A}}) \rangle \in r^{\mathfrak{B}}$
iff $\langle \llbracket t_1 \rrbracket_{h \circ \varrho}^{\mathfrak{B}}, \dots, \llbracket t_n \rrbracket_{h \circ \varrho}^{\mathfrak{B}} \rangle \in r^{\mathfrak{B}}$
iff $(\mathfrak{B}, h \circ \varrho) \models r(t_1, \dots, t_n)$

$$(\mathfrak{A}, \varrho) \models t_1 = t_2 \text{ iff } \llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}} = \llbracket t_2 \rrbracket_{\varrho}^{\mathfrak{A}}$$
$$\text{iff } h(\llbracket t_1 \rrbracket_{\varrho}^{\mathfrak{A}}) = h(\llbracket t_2 \rrbracket_{\varrho}^{\mathfrak{A}})$$
$$\text{iff } \llbracket t_1 \rrbracket_{h \circ \varrho}^{\mathfrak{B}} = \llbracket t_2 \rrbracket_{h \circ \varrho}^{\mathfrak{B}}$$
$$\text{iff } (\mathfrak{B}, h \circ \varrho) \models t_1 = t_2$$

The first proof: compound formulas

- * ロ > * @ > * 注 > * 注 > … 注 … の < (

The first proof: compound formulas

۲

$$\begin{aligned} (\mathfrak{A},\varrho) &\models (\varphi \to \psi) \text{ iff } (\mathfrak{A},\varrho) \not\models \varphi \text{ or } (\mathfrak{A},\varrho) \models \psi \\ &\text{ iff } (\mathfrak{B}, h \circ \varrho) \not\models \varphi \text{ or } (\mathfrak{B}, h \circ \varrho) \models \psi \\ &\text{ iff } (\mathfrak{B}, h \circ \varrho) \models (\varphi \to \psi) \end{aligned}$$

E► <

The first proof: compound formulas

$$\begin{split} (\mathfrak{A},\varrho) &\models (\varphi \to \psi) \text{ iff } (\mathfrak{A},\varrho) \not\models \varphi \text{ or } (\mathfrak{A},\varrho) \models \psi \\ &\quad \text{iff } (\mathfrak{B}, h \circ \varrho) \not\models \varphi \text{ or } (\mathfrak{B}, h \circ \varrho) \models \psi \\ &\quad \text{iff } (\mathfrak{B}, h \circ \varrho) \models (\varphi \to \psi) \end{split}$$

$$(\mathfrak{A},\varrho) \models (\forall x\varphi) \text{ iff for all } a \in A \text{ holds } (\mathfrak{A},\varrho_x^a) \models \varphi$$

iff for all $a \in A \text{ holds } (\mathfrak{B}, h \circ (\varrho_x^a)) \models \varphi$
iff for all $h(a) \in B \text{ holds } (\mathfrak{B}, (h \circ \varrho)_x^{h(a)}) \models \varphi$
iff for all $b \in B \text{ holds } (\mathfrak{B}, (h \circ \varrho)_x^b) \models \varphi$
iff $(\mathfrak{B}, h \circ \varrho) \models (\forall x\varphi)$

 $\varphi(t/x)$ is the result of substituting t for every <u>free</u> occurrence of a variable x in φ .

 $\varphi(t/x)$ is the result of substituting t for every <u>free</u> occurrence of a variable x in φ .

Example: Formulas

- $\forall y(y \leq x)$
- $\forall z (z \leq x)$

express the same property

 $\varphi(t/x)$ is the result of substituting t for every <u>free</u> occurrence of a variable x in φ .

Example: Formulas

- $\forall y (y \leq x)$
- $\forall z(z \leq x)$

express the same property

Substituting y for x in those formulas yields

- $\forall y (y \leq y)$
- $\forall z(z \leq y).$

which are different

• $\perp(t/x) = \perp;$

•
$$\perp (t/x) = \perp;$$

• $r(t_1, \ldots, t_n)(t/x) = r(t_1(t/x), \ldots, t_n(t/x));$

•
$$\perp (t/x) = \perp$$
;
• $r(t_1, \ldots, t_n)(t/x) = r(t_1(t/x), \ldots, t_n(t/x));$
• $(t_1 = t_2)(t/x) = (t_1(t/x) = t_2(t/x));$

•
$$\bot(t/x) = \bot;$$

• $r(t_1, \ldots, t_n)(t/x) = r(t_1(t/x), \ldots, t_n(t/x));$
• $(t_1 = t_2)(t/x) = (t_1(t/x) = t_2(t/x));$
• $(\varphi \to \psi)(t/x) = \varphi(t/x) \to \psi(t/x);$

•
$$\bot(t/x) = \bot;$$

• $r(t_1, ..., t_n)(t/x) = r(t_1(t/x), ..., t_n(t/x));$
• $(t_1 = t_2)(t/x) = (t_1(t/x) = t_2(t/x));$
• $(\varphi \to \psi)(t/x) = \varphi(t/x) \to \psi(t/x);$
• $(\forall x \varphi)(t/x) = \forall x \varphi;$

•
$$\perp(t/x) = \perp;$$

• $r(t_1, \ldots, t_n)(t/x) = r(t_1(t/x), \ldots, t_n(t/x));$
• $(t_1 = t_2)(t/x) = (t_1(t/x) = t_2(t/x));$
• $(\varphi \rightarrow \psi)(t/x) = \varphi(t/x) \rightarrow \psi(t/x);$
• $(\forall x \varphi)(t/x) = \forall x \varphi;$
• $(\forall y \varphi)(t/x) = \forall y \varphi(t/x), \text{ when } y \neq x, \text{ and } y \notin FV(t);$

(ロト (母) (ヨ) (ヨ) (日)

•
$$\bot(t/x) = \bot;$$

• $r(t_1, ..., t_n)(t/x) = r(t_1(t/x), ..., t_n(t/x));$
• $(t_1 = t_2)(t/x) = (t_1(t/x) = t_2(t/x));$
• $(\varphi \to \psi)(t/x) = \varphi(t/x) \to \psi(t/x);$
• $(\forall x \varphi)(t/x) = \forall x \varphi;$

•
$$(orall y \, arphi)(t/x) = orall y \, arphi(t/x)$$
, when $y
eq x$, and $y
ot\in \mathsf{FV}(t)$;

• otherwise the substitution is not permissible

Substitution lemma

Let

- \mathfrak{A} be any structure $\varrho: X \to A$ be any valuation in \mathfrak{A}
- t be any term

Substitution lemma

Let

- \mathfrak{A} be any structure $\varrho: X \to A$ be any valuation in \mathfrak{A}
- t be any term

Then:

• For any term *s* and any variable *x*

$$\llbracket s(t/x) \rrbracket^{\mathfrak{A}}_{\varrho} = \llbracket s \rrbracket^{\mathfrak{A}}_{\varrho^{\mathfrak{a}}_{x}}$$

where $a = \llbracket t \rrbracket_{\varrho}^{\mathfrak{A}}$.

Substitution lemma

Let

- \mathfrak{A} be any structure $\varrho: X \to A$ be any valuation in \mathfrak{A}
- t be any term

Then:

• For any term *s* and any variable *x*

$$\llbracket s(t/x) \rrbracket^{\mathfrak{A}}_{\varrho} = \llbracket s \rrbracket^{\mathfrak{A}}_{\varrho^{\mathfrak{a}}_{x}}$$

where $a = \llbracket t \rrbracket_{\varrho}^{\mathfrak{A}}$.

• For any formula φ , if term t is permissible for x in φ , then

$$(\mathfrak{A},\varrho)\models\varphi(t/x) \text{ iff } (\mathfrak{A},\varrho_x^a)\models\varphi,$$

where $a = \llbracket t \rrbracket_{\varrho}^{\mathfrak{A}}$.