
First-order logic � syntax and semantics

First-order logic is also known as predicate logic and

predicate calculus



Signature

Signature Σ is a family of sets ΣF
n , for n ≥ 0 and sets ΣR

n , for

n ≥ 1.

Elements of ΣF
n are symbols of n-argument operations.

Elements of ΣR
n are symbols of n-argument relations.

Equality sign = does not belong to Σ.

If the signature is �nite and the arities are known, it is often

presented as a sequence of symbols, e.g., +, ·, 0, 1
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Variables and terms

We �x a countably in�nite set X of individual variables.

The set of terms TΣ(X ) over signature Σ and variable set X :

Individual variables are terms

For every n ≥ 0 and every symbol f ∈ ΣF
n , if t1, . . . , tn are

terms, then f (t1, . . . , tn) is also a term

The set FV (t) of variables occurring in t:

FV (x) = {x}.
FV (f (t1, . . . , tn)) =

⋃
n

i=1
FV (ti ).
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Atomic formulas

The set of atomic formulas over Σ and X :

Falsity ⊥ is an atomic formula

For each n ≥ 1, each symbol r ∈ ΣR
n , and each n terms

t1, . . . , tn ∈ TΣ(X ), the expression r(t1, . . . , tn) is an atomic

formula

For each two terms t1, t2, the expression (t1 = t2) is an atomic

formula



Atomic formulas

The set of atomic formulas over Σ and X :

Falsity ⊥ is an atomic formula

For each n ≥ 1, each symbol r ∈ ΣR
n , and each n terms

t1, . . . , tn ∈ TΣ(X ), the expression r(t1, . . . , tn) is an atomic

formula

For each two terms t1, t2, the expression (t1 = t2) is an atomic

formula



Atomic formulas

The set of atomic formulas over Σ and X :

Falsity ⊥ is an atomic formula

For each n ≥ 1, each symbol r ∈ ΣR
n , and each n terms

t1, . . . , tn ∈ TΣ(X ), the expression r(t1, . . . , tn) is an atomic

formula

For each two terms t1, t2, the expression (t1 = t2) is an atomic

formula



Atomic formulas

The set of atomic formulas over Σ and X :

Falsity ⊥ is an atomic formula

For each n ≥ 1, each symbol r ∈ ΣR
n , and each n terms

t1, . . . , tn ∈ TΣ(X ), the expression r(t1, . . . , tn) is an atomic

formula

For each two terms t1, t2, the expression (t1 = t2) is an atomic

formula



Formulas

The set of formulas over Σ and X :

Each atomic formula is a formula

If ϕ,ψ are formulas, then (ϕ→ ψ) is a formula

If ϕ is a formula and x ∈ X is a variable, then (∀xϕ) is a

formula
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Free variables of a formula

The set of free variables FV (ϕ) of a formula ϕ:

FV (⊥) = ∅;
FV (r(t1, . . . , tn)) =

⋃
n

i=1
FV (ti );

FV (t1 = t2) = FV (t1) ∪ FV (t2);

FV (ϕ→ ψ) = FV (ϕ) ∪ FV (ψ);

FV (∀xϕ) = FV (ϕ)− {x}.

A formula without quanti�ers is an open formula.

A formula without free variables is a sentence, or a closed formula.
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Syntax abbreviations

Additional propositional connectives are abbreviations:

(¬ϕ) for ϕ→ ⊥
(ϕ ∨ ψ) for ((¬ϕ)→ ψ)

(ϕ ∧ ψ) for (¬((¬ϕ) ∨ (¬ψ)))

(ϕ↔ ψ) for ((ϕ→ ψ) ∧ (ψ → ϕ))

The existential quanti�er is an abbreviation, too:

(∃xϕ) means (¬(∀x¬ϕ)).



Free vs. bound occurrences of a variable

Each variable occurrence in an atomic formula is a free one

Free (bound) occurrences in ϕ and ψ remain free (bound) in the

formula ϕ→ ψ.

Free occurrences of x in ϕ become bound in ∀xϕ.
Occurrences of other variables in this formula do not change their

status

The distinction between free and bound variables resembles the

distinction between local and global variables in a procedure
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Semantics of formulas

A structure A over Σ consists of

a nonempty set A: the carrier or universe of A

an interpretation of each symbol f ∈ ΣF
n as an n-ary function

f A : An → A

an interpretation of each symbol r ∈ ΣR
n as an n-ary relation

rA ⊆ An

Notation: A = 〈A, f A
1
, . . . , f An , r

A
1
, . . . , rAm〉, where

f1, . . . , fn, r1, . . . , rm are the symbols in the signature



Semantics of formulas

A structure A over Σ consists of

a nonempty set A: the carrier or universe of A

an interpretation of each symbol f ∈ ΣF
n as an n-ary function

f A : An → A

an interpretation of each symbol r ∈ ΣR
n as an n-ary relation

rA ⊆ An

Notation: A = 〈A, f A
1
, . . . , f An , r

A
1
, . . . , rAm〉, where

f1, . . . , fn, r1, . . . , rm are the symbols in the signature



Semantics of formulas

A structure A over Σ consists of

a nonempty set A: the carrier or universe of A

an interpretation of each symbol f ∈ ΣF
n as an n-ary function

f A : An → A

an interpretation of each symbol r ∈ ΣR
n as an n-ary relation

rA ⊆ An

Notation: A = 〈A, f A
1
, . . . , f An , r

A
1
, . . . , rAm〉, where

f1, . . . , fn, r1, . . . , rm are the symbols in the signature



Semantics of formulas

A structure A over Σ consists of

a nonempty set A: the carrier or universe of A

an interpretation of each symbol f ∈ ΣF
n as an n-ary function

f A : An → A

an interpretation of each symbol r ∈ ΣR
n as an n-ary relation

rA ⊆ An

Notation: A = 〈A, f A
1
, . . . , f An , r

A
1
, . . . , rAm〉, where

f1, . . . , fn, r1, . . . , rm are the symbols in the signature



Semantics of formulas

A structure A over Σ consists of

a nonempty set A: the carrier or universe of A

an interpretation of each symbol f ∈ ΣF
n as an n-ary function

f A : An → A

an interpretation of each symbol r ∈ ΣR
n as an n-ary relation

rA ⊆ An

Notation: A = 〈A, f A
1
, . . . , f An , r

A
1
, . . . , rAm〉, where

f1, . . . , fn, r1, . . . , rm are the symbols in the signature



Valuation

A valuation in a Σ-structure A is a function % : X → A

For a valuation %, a variable x ∈ X and an element a ∈ A we de�ne

a modi�ed valuation %ax : X → A:

%ax(y) =

{
%(y) y 6= x

a otherwise
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Values of terms

The value of a term t ∈ TΣ(X ) in a Σ-structure A under valuation

% is denoted [[t]]A% or [[t]]%.

[[x ]]A% = %(x).

[[f (t1, . . . , tn)]]A% = f A([[t1]]A% , . . . , [[tn]]A% ).
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Formula satisfaction

(A, %) |= ϕ is read:

The formula ϕ is satis�ed in the structure A under the

valuation %.

The formula ϕ is true in the structure A under the valuation %.
The formula ϕ holds in the structure A under the valuation %.

(A, %) |= ⊥ does not hold

For n ≥ 1, r ∈ ΣR
n and terms t1, . . . , tn

(A, %) |= r(t1, . . . , tn) i� 〈[[t1]]A% , . . . [[tn]]A% 〉 ∈ rA.

(A, %) |= t1 = t2, i� [[t1]]A% = [[t2]]A% .

(A, %) |= (ϕ→ ψ), if (A, %) |= ϕ does not hold or (A, %) |= ψ
holds

(A, %) |= (∀xϕ) i� for every a ∈ A holds (A, %ax) |= ϕ.
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Satisfaction does not depend on non-free variables

Fact

For any Σ-structure A and any formula ϕ, if valuations % and %′

assign equal values to all free variables od ϕ, then

(A, %) |= ϕ i� (A, %′) |= ϕ.

Hence simpli�ed notation: (A, x : a, y : b) |= ϕ instead of

(A, %) |= ϕ, when %(x) = a and %(y) = b, and there are no other

free variables in ϕ

If ϕ is a sentence, then the valuation can be disregarded.

Hence notation A |= ϕ
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Isomorphism of structures

Given are two structures A = 〈A, . . .〉 and B = 〈B, . . .〉 over Σ

Function h : A→ B is an isomorphism of Σ-structures (denoted

h : A ∼= B) if:

h is a bijection (onto and 1-1)

For n ≥ 0, f ∈ ΣF
n and a1, . . . , an ∈ A

h(f A(a1, . . . , an)) = f B(h(a1), . . . , h(an))

For n ≥ 1, r ∈ ΣR
n and a1, . . . , an ∈ A

rA(a1, . . . , an) i� rB(h(a1), . . . , h(an))
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Isomorphisms and logic

Theorem
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Elementary equivalence

A and B are elementary equivalent (denoted A ≡ B), i� for every

sentence ϕ of �rst-order logic over their common signature, A |= ϕ
if and only if B |= ϕ

Corollary

If A ∼= B to A ≡ B.

Intuitively, isomorphic structures are logically indistinguishable
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Validity and satis�ability of formulas

A formula ϕ is satis�able in A, if there exists a valuation % in A
such that (A, %) |= ϕ.

A formula ϕ is satis�able, if there exists a structure A, in which ϕ
is satis�able

ϕ is true (satis�ed, valid) in A, if (A, %) |= ϕ holds for every

valuation % in A
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A is then said to be a model of ϕ (denoted A |= ϕ)

Σ-structure A is a model of a set of sentences Γ (denoted A |= Γ),
if A |= ϕ holds for every ϕ ∈ Γ.
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The �rst proof: theorem

If h : A ∼= B then for every formula ϕ

(A, %) |= ϕ i� (B, h ◦ %) |= ϕ



The �rst proof: Lemma

If h : A ∼= B then for every term t

h([[t]]A% ) = [[t]]B
h◦%

Induction:

If t is x , then the thesis h(%(x)) = (h ◦ %)(x) holds

If t to f (t1, . . . , tn) to

h([[f (t1, . . . , tn)]]A% = h(f A([[t1]]A% , . . . , [[tn]]A% ))

= f B(h([[t1]]A% ), . . . , h([[tn]]A% ))

= f B([[t1]]B
h◦%, . . . , [[tn]]B

h◦%)

= [[f (t1, . . . , tn)]]B
h◦%
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The �rst proof: atomic formulas

(A, %) 6|= ⊥ and (B, h ◦ %) 6|= ⊥

(A, %) |= r(t1, . . . , tn) i� 〈[[t1]]A% , . . . , [[tn]]A% 〉 ∈ rA

i� 〈h([[t1]]A% ), . . . , h([[tn]]A% )〉 ∈ rB

i� 〈[[t1]]B
h◦%, . . . , [[tn]]B

h◦%〉 ∈ rB

i� (B, h ◦ %) |= r(t1, . . . , tn)

(A, %) |= t1 = t2 i� [[t1]]A% = [[t2]]A%

i� h([[t1]]A% ) = h([[t2]]A% )

i� [[t1]]B
h◦% = [[t2]]B

h◦%

i� (B, h ◦ %) |= t1 = t2
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The �rst proof: compound formulas

(A, %) |= (ϕ→ ψ) i� (A, %) 6|= ϕ or (A, %) |= ψ

i� (B, h ◦ %) 6|= ϕ or (B, h ◦ %) |= ψ

i� (B, h ◦ %) |= (ϕ→ ψ)

(A, %) |= (∀xϕ) i� for all a ∈ A holds (A, %ax) |= ϕ

i� for all a ∈ A holds (B, h ◦ (%ax)) |= ϕ

i� for all h(a) ∈ B holds (B, (h ◦ %)
h(a)
x ) |= ϕ

i� for all b ∈ B holds (B, (h ◦ %)bx) |= ϕ

i� (B, h ◦ %) |= (∀xϕ)
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Term substitution

ϕ(t/x) is the result of substituting t for every free occurrence of a

variable x in ϕ.

Example: Formulas

∀y(y ≤ x)

∀z(z ≤ x)

express the same property

Substituting y for x in those formulas yields

∀y(y ≤ y)

∀z(z ≤ y).

which are di�erent
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Permissible substitution

⊥(t/x) = ⊥;

r(t1, . . . , tn)(t/x) = r(t1(t/x), . . . , tn(t/x));

(t1 = t2)(t/x) = (t1(t/x) = t2(t/x));

(ϕ→ ψ)(t/x) = ϕ(t/x)→ ψ(t/x);

(∀x ϕ)(t/x) = ∀x ϕ;
(∀y ϕ)(t/x) = ∀y ϕ(t/x), when y 6= x , and y 6∈ FV (t);

otherwise the substitution is not permissible
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Substitution lemma

Let

A be any structure % : X → A be any valuation in A

t be any term

Then:

For any term s and any variable x

[[s(t/x)]]A% = [[s]]A%a
x

where a = [[t]]A% .

For any formula ϕ, if term t is permissible for x in ϕ, then

(A, %) |= ϕ(t/x) i� (A, %ax) |= ϕ,

where a = [[t]]A% .
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